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Tsunami run-up and draw-down motions on a uniformly sloping beach are evaluated
based on fully nonlinear shallow-water wave theory. The nonlinear equations of
mass conservation and linear momentum are first transformed to a single linear
hyperbolic equation. To solve the problem with arbitrary initial conditions, we apply
the Fourier–Bessel transform, and inversion of the transform leads to the Green
function representation. The solutions in the physical time and space domains are then
obtained by numerical integration. With this semi-analytic solution technique, several
examples of tsunami run-up and draw-down motions are presented. In particular,
detailed shoreline motion, velocity field, and inundation depth on the shore are
closely examined. It was found that the maximum flow velocity occurs at the moving
shoreline and the maximum momentum flux occurs in the vicinity of the extreme draw-
down location. The direction of both the maximum flow velocity and the maximum
momentum flux depend on the initial waveform: it is in the inshore direction when
the initial waveform is predominantly depression and in the offshore direction when
the initial waves have a dominant elevation characteristic.

1. Introduction
In 1958, Carrier & Greenspan derived the exact analytical solution of fully non-

linear non-breaking shallow-water waves on a uniformly sloping beach. Because
the derivation involves nonlinear and hodograph-type transformations, the Carrier–
Greenspan solution is not in a convenient form to be converted to presentations in
real time and space domains. For this reason, only a limited number of the practical
applications have been reported. Carrier & Greenspan (1958) provided the solution
for a monochromatic incident wavetrain, as well as two examples for very specific
initial-valued conditions. Spielvogel (1975) applied the Carrier–Greenspan solution
to the inverse problem, namely, calculating the incident waveform offshore assuming
the initial condition to be a stationary maximum run-up with an exponential profile.
Pelinovsky & Mazova (1992) analysed the shoreline trajectories for the incident wave
of a Lorenz form. Synolakis (1987) solved the run-up of a wave with a solitary-wave
profile over a constant-depth region offshore which then climbed up a uniformly
sloped beach. Tadepalli & Synolakis (1994) extended Synolakis’s solution to both
leading-depression and leading-elevation N-waves. It is noted that both Synolakis

† George Carrier died just prior to the submission of this paper on 8 March 2002.
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(1987) and Tadepalli & Synolakis (1994) had to make significant efforts to solve
their specific problems, although they solved the same basic problem but with differ-
ent initial waveforms. Because of the complexity, their analyses were limited to the
determination of the maximum run-up heights and to the analyses of evolution in
water-surface profiles. The flow velocity field and the associated shoreline motions
were not discussed in depth. More importantly, their solutions are restricted to cases
with infinitesimal amplitudes and velocities at the offshore boundary. What we wish
to present in this paper is a comprehensive methodology for the accurate run-up/run-
down computations for fully nonlinear shallow-water waves throughout the domain.
The solutions are conveniently presented in the physical time and space domain. To
achieve this, the Green function representation of the solution is first obtained, then
numerical integration is performed to express the results in the useful physical forms
in real space and time.

2. Analysis
The fully nonlinear shallow-water-wave equations for propagation over a plane

beach with a uniform slope α can be written as

[u′(αx′ + η′)]x′ + η′t′ = 0,

u′t′ + u′u′x′ + gη′x′ = 0,
(1)

where u′ is the horizontal flow velocity that is assumed uniform over the depth, η′ is
the vertical departure of the water surface from its quiescent position, g is acceleration
due to gravity, x′ is the horizontal coordinate pointing offshore from the shoreline of
the quiescent state, and t′ is time. Note that the primed quantities are dimensional,
and the letter subscript represents partial differentiation. The geometry of the problem
is depicted in figure 1. The following scaling parameters are introduced:

u′ =
√
gαLu, η′ = αLη, x′ = Lx, t′ =

√
L

αg
t, (2)

where L is any convenient horizontal length scale, which may be the distance from
the shoreline to the middle of the postulated initial wave condition. Using this scaling,
the shallow-water-wave equations (1) can be expressed in the following dimensionless
forms:

[u(x+ η)]x + ηt = 0,

ut + uux + ηx = 0.
(3)

Note that the beach slope α and the acceleration due to gravity g no longer appear
in these governing equations.

Further transformation of (3) is made by introducing the distorted coordinates q
and λ such that

λ = t− u, q = x+ η. (4)

Note that

xq = 1− ηq, xλ = −ηλ, tq = uq, tλ = 1 + uλ. (5)

The Jacobian of the transformation is J = xqtλ− xλtq , and unless J (or 1/J) vanishes
somewhere in the (x, t)-domain, the transformation is single-valued. It follows from
(5) that

qx =
tλ

J
, qt = −xλ

J
, λx = − tq

J
, λt =

xq

J
. (6)
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Figure 1. A definition sketch.

Then, the transformation of (3) yields

(qu)q +

(
η +

u2

2

)
λ

= 0,

uλ +

(
η +

u2

2

)
q

= 0.
(7)

It is convenient to write ψ = η+ 1
2
u2, and replace q by σ2, such that σ =

√
q =
√
x+ η.

Note that σ = 0 represents the moving shoreline, and, since q > 0, σ is always real in
the fluid domain. Then, (7) becomes

(σ2u)σ + 2σψλ = 0,

uλ +
1

2σ
ψσ = 0,

(8)

and the elimination of u yields

4σψλλ − (σψσ)σ = 0 (9)

Equation (9) is the same form as that derived by Carrier & Greenspan (1958), but
with slightly different non-dimensionalization.

We can also write

ψ = η + 1
2
u2 = ϕλ, u = −ϕσ

2σ
, η = ϕλ − ϕ2

σ

8σ2
. (10)

It is evident that the potential ϕ also satisfies (9):

4σϕλλ − (σϕσ)σ = 0. (11)

Equation (11) is a second-order partial differential equation, which requires two
independent initial conditions at λ = 0 to solve for a unique solution. Synolakis
(1987) and Tadepalli & Synolakis (1994) imposed a single initial condition in terms of
ψ, approximating ψ ≈ η in their problems. The other necessary initial condition, ψλ,
was implicitly incorporated in their solution form, restricting their initial condition to
steady propagation of the incident linear wave offshore.

Without such restrictions, we consider the general initial conditions:

ϕ(σ, 0) = P (σ), ϕλ(σ, 0) = F(σ), (12)

in which

P (σ) = −
∫ σ

0

2σ′u(σ′, 0) dσ′, F(σ) = η(σ, 0) + 1
2
u2(σ, 0). (13)
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To solve this problem, we use the Fourier–Bessel transform (also called the Hankel
transform) of the form

ϕ(ρ, λ) =

∫ ∞
0

σJ0(ρσ)ϕ(σ, λ) dσ, (14)

in which the inversion identity is

ϕ(σ, λ) =

∫ ∞
0

ρJ0(ρσ)ϕ(ρ, λ) dρ. (15)

Note that the transformed initial conditions are expressed as

ϕ(ρ, 0) = P (ρ), ϕλ(ρ, 0) = F(ρ). (16)

Multiplying (11) by J0(ρσ) and integrating each side of that equation from zero to ∞,
using integration by parts, yields

ϕλλ + 1
4
ρ2ϕ = 0, (17)

whose solution, using (16), is

ϕ(ρ, λ) = P (ρ) cos(ρλ/2) +
2

ρ
F(ρ) sin(ρλ/2). (18)

Inversion of (18) using (15) can be obtained as

ϕ(σ, λ) =

∫ ∞
0

ρJ0(ρσ){ϕ(ρ, 0) cos ρλ/2 + (2/ρ)ϕλ(ρ, 0) sin ρλ/2} dρ

= 2
∂

∂λ

∫ ∞
0

P (σ′′)
[
σ′′
∫ ∞

0

J0(ρσ) sin(ρλ/2)J0(ρσ
′′) dρ

]
dσ′′

+2

∫ ∞
0

F(σ′′)
[
σ′′
∫ ∞

0

J0(ρσ) sin(ρλ/2)J0(ρσ
′′) dρ

]
dσ′′.

(19)

The derivation of (19) is presented in Appendix A. Equation (19) can be rewritten in
a Green function presentation as

ϕ(σ, λ) = 2

{∫ ∞
0

F(b)G(b, σ, λ) db+

∫ ∞
0

P (b)Gλ(b, σ, λ) db

}
, (20)

where

G(b, σ, λ) = b

∫ ∞
0

J0(ρσ) sin(ρλ/2)J0(ρb) dρ (21)

is the Green function which would permit the determination of the ϕ(σ, λ) that
would ensue from the initial condition (12). The Green function (21) can be explicitly
evaluated as

G(b, σ, λ) =

0 for 1
2
λ < |σ − b|

1

π

√
b

σ
K

(
λ2 − 4(σ − b)2

16σb

)
for |σ − b| < 1

2
λ < |σ + b|

4

π

b√
λ2 − 4(σ − b)2

K

(
16σb

λ2 − 4(σ − b)2

)
for 1

2
λ > |σ + b|

(22)
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Figure 2. The Green function G(b, σ, λ) for λ = 0.1, 0.2, 0.3, 0.4 and 0.5 with σ = 0.05.

where K(k) =
∫ π/2

0
dν/
√

1− k sin2 ν is the complete elliptic integral of the first
kind. The derivation of (22) is presented in Appendix B. The Green function has a
singularity at b = 1

2
λ − σ as shown in figure 2, none the less, (20) can be integrated

numerically with a standard integration software (e.g. the IMSL library) for any
regular initial conditions in (12).

3. Results
We first consider the initial condition with nil velocity everywhere, but the water

surface is displaced at t = 0. This condition is typically assumed for tsunami gen-
eration, because the horizontal scale of the seismic sea-floor dislocation is much
larger than the vertical scale, hence the time scale of the dislocation is effectively
much shorter than the flow establishment. For the case of u = 0, λ = 0 exactly.
Furthermore, F(σ) = ψ(σ, 0) = ϕλ(σ, 0) = η(σ) at λ = 0, without approximation.

As an example, the initial water-surface displacement of Gaussian shape is im-
posed:

η = a exp{−k(x− x0)
2} ≈ a exp{−k(σ2 − σ2

0)2} for η � x. (23)

Hence, we set

F(b) = a exp{−k(b2 − b2
0)

2}, P (b) = 0. (24)

The initial wave with a = 0.017, b0 = 1.3 (x0 = 1.69) and k = 4.0 is shown in figure 3.
Note that the approximation made in (23) is simply for convenience, which results
in the initial water-surface displacement slightly deviated from the exact Gaussian
shape; full nonlinearity is still retained in our solution, however. Equation (20) is
integrated using the IMSL library, and the result ϕ(σ, λ) is plotted in figure 4. The
physical (yet non-dimensionalized) variables in the (x, t)-space are computed using
(10) and then (4). Figures 5 and 6 show the temporal and spatial variations of
water-surface displacement η and water velocity u, respectively. The excursion of
the shoreline is small (−0.047 < x < 0.017) for the scale of the figures, and is not
presented. (The shoreline locations will be presented explicitly later when we discuss
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Figure 3. The initial waveform of a Gaussian shape (23) with a = 0.017, b0 = 1.3 and k = 4.0.
The flow velocity is nil everywhere.

the run-up and draw-down motions.) Figures 5 and 6 show that the initial static
water-surface displacement evolves into the incoming, outgoing and reflected waves.
Figure 7 shows the snapshots of wave profile at t = 1.0, that is extracted from
figure 5, and the wave profile at t = 5.3. The profile at t = 5.3 (figure 7b) is obtained
by computing only in the narrow range of λ (i.e. 5.25 < λ < 5.35); our method
can obtain the solution for arbitrarily selected time and location without computing
the rest of the computational domain. Figure 7(a) shows the incoming wave and
the outgoing wave generated from the initial static water-surface deformation. The
incident wave of single elevation causes the reflected wave in the dipole formation
(figure 7b) as demonstrated earlier by Carrier & Noiseux (1983).

The next example is to set the initial condition to be an incident wave from offshore,
i.e. u(x, t = 0) 6= 0. The initial velocity field is approximated by neglecting nonlinear
effects. This is justified by the fact that the wave is essentially linear far offshore:
1
2
u2 � O(1) and ηux � O(1). Hence, we approximate the velocity field by

u ≈ η√
x
. (25)

For the Gaussian shaped initial wave in the form (23), we set

F(b) = a exp{−k(b2 − b2
0)

2},
and

P (b) = −
∫ b

0

2η(b′, 0) db′ = −
∫ b

0

2a exp{−k(b′2 − b2
0)

2} db′. (26)

The difficulty arises from the computation of the term∫ ∞
0

P (b)Gλ(b, σ, λ) db

(
=

∂

∂λ

∫ ∞
0

P (b)G(b, σ, λ) db

)
(27)

in (20) which contains the highly singular function Gλ(b, σ, λ), especially for small σ.
A satisfactory computation can be made for a small value of the initial amplitude,
a. Figure 8 shows the water-surface displacement η in the (x, t)-space with the initial
wave parameters: a = 0.0025, b0 = 1.3 and k = 4.0. Figure 9 shows the spatial profiles
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Figure 4. ϕ(σ, λ) computed by (20) for the initial Gaussian shaped water-surface displacement
defined in (23) with a = 0.017, b0 = 1.3 and k = 4.0.
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Figure 5. Water-surface trajectory corresponding to ϕ(σ, λ) shown in figure 4 for the initial
Gaussian shaped water-surface displacement defined in (23) with a = 0.017, b0 = 1.3 and k = 4.0.

of water surface at t = 1.0 that are extracted from figure 8. In contrast to the plots
shown in figures 5 and 7(a), figures 8 and 9 clearly exhibit no outgoing wave from
the initial wave location; there is minute outgoing-wave noise, owing perhaps to the
mismatch caused by the linear approximation for u, although it is too small to appear
in figures 8 and 9.
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Figure 6. Flow velocity trajectory corresponding to ϕ(σ, λ) shown in figure 4 for the initial
Gaussian shaped water-surface displacement defined in (23) with a = 0.017, b0 = 1.3 and k = 4.0.

4. Applications
With the solution procedure described, we now examine the detailed run-up and

run-down motions. Such information is useful to analyse in preparation for a tsunami
attack on the shore. The following four cases of the initial static water-surface
deformation are examined:

(a) The Gaussian shape as described in (23).
(b) The negative Gaussian shape, that is the inverse profile of case a:

η = −a exp{−k(x− x0)
2} with {a = 0.017, k = 4.0, x0 = 1.69}. (28)

(c) The leading depression N-wave shape, typically caused by a seismic fault
dislocation by subduction earthquake

η = a1 exp{−k1(x− x1)
2} − a2 exp{−k2(x− x2)

2}
with {a1 = 0.02, a2 = 0.01, k1 = k2 = 3.5, x1 = 1.5625, x2 = 1.0}. (29)

(d) The leading depression N-wave shape, typically caused by an offshore subma-
rine landslide:

η = a1 exp{−k1(x− x1)
2} − a2 exp{−k2(x− x2)

2}
with {a1 = 1

3
a2 = 0.006, a2 = 0.018,

k1 = 1
9
k2 = 0.4444, k2 = 4.0, x1 = 4.1209, x2 = 1.6384}. (30)

Recall that our problem in the non-dimensional form of (3) is independent of the
beach slope. The constants used in the above examples are selected so that the initial
waveform for each case has approximately the same maximum amplitude as well as
the breadth of the primary displacement. Table 1 contains the details of the values
of the maximum initial displacements. The initial waveforms are shown in figure 10.
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Figure 7. The water-surface profile evolved from the initial Gaussian-shaped displacement of
figure 3. (a) Incident and outgoing waves at t = 1.0 extracted from figure 5. (b) Reflected wave at
t = 5.3.
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Figure 8. Water-surface trajectory for the initial Gaussian-shaped incident wave defined in (26)
with a = 0.0025, b0 = 1.3 and k = 4.0.

Note that the parameters used in case d – the initial wave caused by a submarine
landslide – keep the displaced water mass conserved, i.e. the integrated amount of the
positive dislocation is identical to that of the negatively dislocated volume.

All of the constant parameters are non-dimensional quantities. Considering the
centroid of initial displacement at 75 km offshore with the beach slope of 1

200
, then the
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Case a Case b Case c Case d

Initial maximum displacement 0.0170 −0.0170 0.0173 −0.0175
Maximum run-up −0.0470 −0.0268 −0.0583 −0.0328
Maximum draw-down 0.0268 0.0470 0.0235 0.0484
Maximum shoreward velocity −0.103 −0.213 −0.1634 −0.225

at x = −0.0260 at x = 0.0333 at x = −0.0167 at x = 0.0348
Maximum offshore velocity 0.213 0.103 0.226 0.104

at x = 0.0122 at x = 0.0365 at x = 0.00666 at x = 0.0370
Maximum momentum flux 0.000471 −0.000471 0.000576 −0.000567

at x = 0.0287 at x = 0.0479 at x = 0.0254 at x = 0.0493

Table 1. Some extreme values of the results.

x

0 1 2 3
–0.002

0

0.002

0.004

0.006

è

Figure 9. The water-surface profile at t = 0 evolved from the initial Gaussian-shaped incident
wave extracted from figure 8.

horizontal length scale parameter L in (2) can be set to 75 km. In case a (Gaussian
initial wave), the constant a = 0.017 represents the maximum water-surface amplitude
of approximately 6 m; this amplitude represents a significant but realistic tsunami
source. For case d (wave generated by the submarine landslide), if the submarine
landslide is generated at 5 km offshore with the beach slope of 1

10
, then the maximum

water-surface depression would be approximately 9 m, which also reflects a realistic
event. In other words, all four models represent very realistic tsunami initial conditions.

Figures 11 and 12 show the temporal and spatial variations of the water-surface
elevation and the inundation depth, respectively, for the four cases. Temporal vari-
ations of the shoreline locations are also shown. The computations are made only
for the run-up and run-down regions near the shore, i.e. 1.5 < t < 3.5 and x < 0.15;
the computations were not made in the offshore region and t < 1.5. Unlike ordinary
numerical simulation models, the computational domain in x and t can be selective,
taking the advantage of our analytical–numerical hybrid model.
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Figure 10. Initial waveforms. (a) Gaussian shape, (b) negative Gaussian shape, (c) leading N-wave
caused by fault dislocation, (d ) leading N-wave caused by submarine landslide.

Temporal variations of the shoreline locations shown in figures 11 and 12 show
that the initial waveforms of the predominantly positive displacement, cases a and c,
result in higher run-up heights than the heights caused by the initial waveforms of the
predominantly negative displacement, cases b and d. The converse can be observed
for the withdrawal distances; those in cases b and d are greater than cases a and c.

In spite of their equal positive displacements in cases a and c, the maximum run-up
height is substantially greater in case c (the leading depression N-wave) than in case a
(the single positive displacement of the Gaussian shape): the max |x| = 0.0470 for case
a and 0.0583 for case c, as shown in table 1. This higher run-up height of the leading
depression N-wave is consistent with the findings of Mazova & Pelinovsky (1991) and



90 G. F. Carrier, T. T. Wu and H. Yeh

(a) (b)

(c) (d )

1.5

2.0

2.5

3.0

3.5

–0.05 0 0.05 0.10 0.15
1.5

2.0

2.5

3.0

3.5

–0.05 0 0.05 0.10 0.15

1.5

2.0

2.5

3.0

3.5

–0.05 0 0.05 0.10 0.15
1.5

2.0

2.5

3.0

3.5

–0.05 0 0.05 0.10 0.15

–0.05 0 0.05
è

t

t

x x

Figure 11. Temporal and spatial variations of the water-surface elevation for (a) the initial waveform
is the Gaussian shape (case a), (b) the negative Gaussian shape (case b), (c) the leading depression
N-wave (case c), and (d ) the waveform caused by the submarine landslide (case d).

Tadepalli & Synolakis (1994). The wave reflection pattern shown in figure 12 indicates
that the reflection of the small negative leading wave in case c causes a steepening
of the subsequent positive wavefront; such an effect is observed by comparing the
run-up in cases a and c near t = 2.0. The steepening of the wavefront appears to cause
a higher run-up height in case c than in case a. On the other hand, the reflection of
the large negative leading wave in case d appears to reduce the subsequent positive
wave surge.

The magnitude of the maximum run-up height of case a (positive Gaussian wave)
is identical to that of the minimum shoreline elevation of case b (negative Gaussian
wave), and the maximum run-up height of case b has an equal magnitude to the
minimum of case a (see table 1). This coincidence may be interpreted as the extreme
shoreline location computed by fully nonlinear theory being identical to those pre-
dicted by linear theory, whereas the shoreline trajectories and waveforms are different
for the two cases as observed in figures 11 and 12. This characteristic was pointed
out by Carrier (1971) and also discussed by Synolakis (1987).

It is also observed in figure 11, as well as in figure 12, that the water-surface contours
in case c are approximately symmetrical about the time of maximum run-up, t = 2.4,
while the contours for other cases are skewed, even for cases a and c in spite of the
symmetric initial water-surface displacement. The inversion of initial water-surface
displacement in cases a and b does not result in simple replacement of the positive
with the negative in their run-up and run-down processes. Clearly, nonlinear effects
are important for the run-up/run-down processes. In spite of this nonlinear effect,
as we discussed earlier, the maximum inundation height of case a is identical to
the minimum draw-down of case b. The maximum inundation depth at x = 0 (the
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Figure 12. Temporal and spatial variations of the inundation depth for (a) the initial waveform is
the Gaussian shape (case a), (b) the negative Gaussian shape (case b), (c) the leading depression
N-wave (case c), and (d ) the waveform caused by the submarine landslide (case d).

shoreline location at the quiescent state) occurs prior to the occurrence of maximum
run-up in case a, while it occurs after the maximum run-up in cases b and d, when
the primary initial wave is a depression. Case c shows that the maximum inundation
depth at x = 0 and the maximum shoreline run-up take place at approximately the
same time.

Figure 13 shows the flow velocities in the (x, t)-plane. In every case, the maximum
and minimum flow velocities occur at the shoreline. The reversal of flow direction is
gradual at the maximum penetration of the wave, whereas it is rapid at the extreme
draw-down position. It is also evident that the maximum flow velocities occur near
the minimum draw-down position.

Temporal variations of the shoreline velocities us are shown in figure 14. Note that
the positive value in velocity represents the offshore direction. Figure 14 shows that
for cases a and c (predominantly positive displacement in the initial waveform), the
maximum shoreline speed occurs during the draw-down process, i.e. in the offshore
direction. On the other hand, the maximum speed occurs during the run-up process,
i.e. in the inshore direction, for cases b and d, which are generated by predominantly
negative initial water-surface displacement. This shoreline velocity behaviour implies
that objects (e.g. sediments, boulders, etc.) will probably be carried inshore in the
event of predominantly negative initial waves, whereas they will be carried offshore in
the case of positive initial waves. This subject will be revisited later when we discuss
wave forces.

As observed in figure 14, temporal variations of the shoreline velocities in cases a
and b do not exhibit mirror images about the level of us = 0. For example, the rate
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Figure 13. Temporal and spatial variations of the fluid velocity for (a) the initial waveform is
the Gaussian shape (case a), (b) the negative Gaussian shape (case b), (c) the leading depression
N-wave (case c), and (d ) the waveform caused by the submarine landslide (case d).

of increase in velocity during the draw-down process in case a is much slower than
the rate of increase in run-up velocity in case b. In spite of evidently asymmetric
processes in run-up and draw-down of cases a and b, the magnitude of the maximum
velocity turns out to be identical, as presented in table 1.

To find the shoreline velocity variations in space, figure 15 contains parametric
plots of the shoreline velocity and the shoreline location. The trajectory for case
a in the (x, u)-space resembles that for case c, and also case b resembles case d.
The extreme velocities in the inshore and offshore directions occur at almost the
same offshore location (x ≈ 0.035) in cases b and d, whereas in cases a and c, the
maximum run-up velocity occurs at a slightly inshore location (x < 0). However,
the maximum draw-down velocity results immediately before the extreme draw-down
location. Another observation is that the velocity excursion loop of case a is not the
reverse of case b, and they are qualitatively different.

The linear-momentum flux associated with the run-up and run-down is evaluated
from the inundation depth and the velocity, i.e. figures 12 and 13, respectively. The
momentum flux per unit breadth, based on the approximation of the quasi-steady
flows can be expressed as

f = qu2, (31)

which can be interpreted as the drag force per unit breadth for a surface-piercing
stationary object being placed vertically over the flow depth. Hence, the quantity
evaluated by (31) provides a measure for the net force exerted on such an object.

Figure 16 shows the computed momentum-flux fields. For all four cases, the
maximum momentum flux occurs near the extreme draw-down location, x > 0, and
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Figure 14. Temporal variations of shoreline velocity: (a) the initial waveform is the Gaussian shape
(case a), (b) the negative Gaussian shape (case b), (c) the leading depression N-wave (case c), and
(d ) the waveform caused by the submarine landslide (case d).

immediately prior to, or after, the flow reversal. For predominantly positive initial
waves (cases a and c), the maximum momentum flux results during the draw-down
phase and points offshore. On the other hand, for the cases of predominantly negative
initial waveform (cases b and d), the maximum momentum flux occurs during the
run-up immediately after the extreme draw-down, acting in the inshore direction. Also
note that for the incident wave of leading depression N-wave (case c), both inshore
and offshore forces are significant, although the draw-down force is still greater.
The magnitude of the maximum value of f for each case is given in table 1. The
maximum momentum flux for the initial Gaussian wave (case a) is identical to that
for the negative Gaussian wave (case b), although their directions are opposite. It is
noted that the corresponding values of the flow velocity u and the inundation depth
q are also identical for the two cases, except the value of u has the opposite sign.

5. Summary and discussion
An improved method is developed to compute tsunami run-up and run-down mo-

tions onto a uniformly sloping beach. The method is based on the Green function
representation of fully nonlinear shallow-water-wave theory. It is robust and general,
for it is capable of computing both incoming and outgoing waves with arbitrary
initial wave conditions. Unlike the ordinary time-stepping numerical methods (e.g.
finite-difference, finite-element and boundary-element method), the present analytical–
numerical hybrid method can analyse for an arbitrarily selected temporal and spatial
domain without computing for other domains. Hence, detailed and accurate compu-
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Figure 15. Parametric plots of shoreline velocity vs. shoreline location: (a) the initial waveform is
the Gaussian shape (case a), (b) the negative Gaussian shape (case b), (c) the leading depression
N-wave (case c), and (d ) the waveform caused by the submarine landslide (case d).
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Figure 16. Temporal and spatial variations of the linear-momentum flux for (a) the initial waveform
is the Gaussian shape (case a), (b) the negative Gaussian shape (case b), (c) the leading depression
N-wave (case c), and (d ) the waveform caused by the submarine landslide (case d).
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Figure 17. The Jacobian of the transformation J = xqtλ − xλtq for case a: ——, σ = 0.04; +, 0.03;
– – –, 0.02; - - - -, 0.01.

tations can be made conveniently for a focused domain. It is anticipated that the
solutions can be used for validation of traditional numerical codes, especially to test
their performance in the prediction of the shoreline movements and the run-up/run-
down velocity fields.

Drawbacks of this method include the following: (i) it is only applicable for the
problems in one spatial dimension with a uniformly sloping beach, and (ii) once the
value of the Jacobian of the transformation, J = xqtλ − xλtq , becomes zero, physical
interpretations of the solution become uncertain. For example in case a, the Jacobian
vanishes a few times, but the occurrence is limited very close to the shoreline σ < 0.04
as demonstrated in figure 17. As pointed out by Synolakis (1987) with his experimental
laboratory results, even if the Jacobian becomes zero at the tip of the shoreline, the
solution of nonlinear shallow-water-wave theory recovers immediately and yields
extremely accurate predictions for later times.

Using our new method, we examined four initial wave conditions which represent
typical tsunami generations: case a, the positive water-surface displacement of Gauss-
ian shape; case b, the negative displacement of Gaussian shape; case c, the leading
depression N-wave; and case d, the wave having a water-surface characteristic gener-
ated by a submarine-landslide. Cases a and c are predominantly positive initial waves,
whereas cases b and d have predominantly negative initial waveforms. It was found
that the gross characteristics in the initial waveform are important for the behaviours
in run-up and run-down motion, i.e. the motions in cases a and c are similar, and
cases b and d are also similar. The following characteristics and behaviours of the
run-up and draw-down processes were found in our study:

(i) When the initial waveform is positive (including case c, the leading depression
N-wave), the run-up elevation is greater than the draw-down, whereas the converse
results for the predominantly negative initial wave.

(ii) The maximum flow velocity occurs at the shoreline during the draw-down
phase for the predominantly positive initial waves (cases a and c), whereas the
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maximum velocity for the predominantly negative initial waves (cases b and d) occurs
at the shoreline during the run-up. Since flow stresses are proportional to the square
of velocity for turbulent flows, submerged objects, such as sediments, boulders, etc.
tend to move shoreward when the initial waveform is a depression. On the other
hand, they tend to move offshore when the initial wave is an elevation.

(iii) For the initial positive waveform, cases a and c, the maximum momentum
flux (force) over the flow depth occurs after the maximum penetration, at the vicinity
of the extreme draw-down location immediately before the flow reversal, hence the
momentum flux is in the offshore direction. On the other hand, the maximum mo-
mentum flux occurs in the inshore direction prior to the maximum run-up penetration
for cases b and d (the initial negative waveforms), and it occurs immediately after
the flow reversal from the initial withdrawal caused by the leading depression wave.
This indicates that the dominant momentum flux is shoreward for the predominantly
negative initial waveform. Regardless of the initial waveform, the momentum flux,
that is a measure of the net force exerted on a surface-piercing object over the depth,
becomes maximum near the extreme draw-down location. This indicates that offshore
structures placed close to the shore are vulnerable to tsunami attacks: for example,
breakwaters, piers, LNG and oil loading terminals, ships moored offshore, etc.

(iv) The initial conditions of cases a and b have an identical initial waveform
except the sign in the displacement, η. Although their run-up and run-down processes
are different, their extreme values in velocity u and momentum flux f turn out to be
identical. This is because the field of ϕ(σ, λ) of case a is an exact mirror image of cases
b as seen in (20) with P (b) = 0. Equation (10) further indicates that the fields of ψ and
u in the (σ, λ)-space are also in the exact mirror images. However, the difference arises
from the conversion of the (σ, λ)-space to the (x, t)-physical space by (4). Consequently,
the extreme values of u and ψ are preserved in each case, although the location and
the timing of the occurrence are different. Note that the parameter ψ represents
the total mechanical energy. The linear-momentum flux (i.e. force) is computed by
f = qu2 = σ2u2; hence, the magnitude of f is identical for cases a and b as well. It is
emphasized that the mirror images in the extreme magnitudes of u, ψ, and f do not
relate to the well-known equivalence in the maximum run-up penetration between
the linear and nonlinear theories discussed by Carrier (1971) and Synolakis (1987).
Instead, the linear–nonlinear correspondence in the maximum penetration results in
the condition of u = 0 in (10). According to (20), the mirror correspondence in the
extreme values of u and ψ and the identical value of f result even if P (b) 6= 0, as long
as the initial conditions F(b) and P (b) of the two corresponding cases are identical
in magnitude but have opposite signs. It is re-emphasized that even in such cases, the
run-up/run-down processes in terms of the temporal and spatial patterns are different.

This work was supported by the US National Science Foundation (CMS-9907815,
CMS-9978399) and the Department of Energy (DE-FG02-845R40158).

Appendix A. Derivation of (19)

ϕ(σ, λ) =

∫ ∞
0

ρJ0(ρσ){ϕ(ρ, 0) cos ρλ/2 + (2/ρ)ϕλ(ρ, 0) sin ρλ/2} dρ

=

∫ ∞
0

ρJ0(ρσ) cos ρλ/2

∫ ∞
0

σ′J0(ρσ
′)P (σ′) dσ′dρ

+

∫ ∞
0

2J0(ρσ) sin ρλ/2

∫ ∞
0

σ′J0(ρσ
′)F(σ′) dσ′dρ
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= 2
∂

∂λ

∫ ∞
0

J0(ρσ) sin ρλ/2

∫ ∞
0

σ′J0(ρσ
′)P (σ′) dσ′dρ

+2

∫ ∞
0

J0(ρσ) sin ρλ/2

∫ ∞
0

σ′J0(ρσ
′)F(σ′) dσ′dρ

= 2
∂

∂λ

∫ ∞
0

J0(ρσ) sin ρλ/2

∫ ∞
0

σ′J0(ρσ
′)
∫ ∞

0

δ(σ′′ − σ′)P (σ′′) dσ′′dσ′dρ

+2

∫ ∞
0

J0(ρσ) sin ρλ/2

∫ ∞
0

σ′J0(ρσ
′)
∫ ∞

0

δ(σ′′ − σ′)F(σ′′) dσ′′dσ′dρ

= 2
∂

∂λ

∫ ∞
0

P (σ′′)
[∫ ∞

0

J0(ρσ) sin ρλ/2

∫ ∞
0

σ′J0(ρσ
′)δ(σ′′ − σ′) dσ′dρ

]
dσ′′

+2

∫ ∞
0

F(σ′′)
[∫ ∞

0

J0(ρσ) sin ρλ/2

∫ ∞
0

σ′J0(ρσ
′)δ(σ′′ − σ′) dσ′dρ

]
dσ′′

= 2
∂

∂λ

∫ ∞
0

P (σ′′)
[
σ′′
∫ ∞

0

J0(ρσ) sin(ρλ/2)J0(ρσ
′′) dρ

]
dσ′′

+2

∫ ∞
0

F(σ′′)
[
σ′′
∫ ∞

0

J0(ρσ) sin(ρλ/2)J0(ρσ
′′) dρ

]
dσ′′

= 2

∫ ∞
0

P (b)Gλ(b, σ, λ) db+ 2

∫ ∞
0

F(b)G(b, σ, λ) db

where G(b, σ, λ) = b
∫ ∞

0
J0(ρσ) sin(ρλ/2)J0(ρb) dρ.

Appendix B. Derivation of (22)
We wish to evaluate, explicitly and exactly, the following integral:

I(a, b, c) =

∫ ∞
0

J0(at)J0(bt) sin ct dt. (B 1)

Without loss of generality, we take a, b, and c to be real and non-negative.
Because of the symmetry in a- and b- exchange, it is sufficient to consider either

a 6 b or a > b, but not both. Using (9.1.20) in Abramowitz & Stegun (1964),

J0(bt) =
2

π

∫ 1

0

(1− ζ2)−1/2 cos(btζ) dζ,

(B 1) can be expressed as

I(a, b, c) =
2

π

∫ 1

0

dζ(1− ζ2)−1/2

∫ ∞
0

dtJ0(at) cos(btζ) sin ct

=
1

π

∫ 1

0

dζ(1− ζ2)−1/2

∫ ∞
0

dtJ0(at)[sin(c+ bζ)t+ sin(c− bζ)t]

=
1

π

∫ 1

−1

dζ(1− ζ2)−1/2

∫ ∞
0

dtJ0(at) sin(c− bζ)t.
The useful formula (6.671.7) in Gradshteyn & Ryzhik (1980) is∫ ∞

0

J0(at) sin τt dt =

{
0 if τ < a,

(τ2 − a2)−1/2 if τ > a.
(B 2)
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In this formula, both a and τ are assumed to be positive. There is no loss of generality
in taking a > 0; if τ is allowed to be negative, then (B 2) can be extended to

∫ ∞
0

J0(at) sin τt dt =


−(τ2 − a2)−1/2 for τ < −a,
0 for |τ| < a,

(τ2 − a2)−1/2 for τ > a,

or ∫ ∞
0

J0(at) sin τt dt = (τ2 − a2)−1/2[H(τ− a)−H(−τ− a)],

where H(•) is the heaviside function. The integral I can be now written as

I(a, b, c) =
1

π

∫ 1

−1

dζ(1− ζ2)−1/2[(c− bζ)2 − a2]−1/2[H(c− bζ − a)−H(−c+ bζ − a)].

Observe that the argument of one of the Heaviside function vanishes, c− bζ − a = 0,
when ζ = (c− a)/b, and the other, −c + bζ − a = 0, when ζ = (−c− a)/b. Also
observe that at the integration limits of ζ = ±1:

ζ =
c− a
b

= −1↔ c− a+ b = 0, ζ =
c− a
b

= 1↔ c− a− b = 0,

ζ =
−c− a
b

= −1↔ c+ a− b = 0, ζ =
−c− a
b

= 1↔ c+ a+ b = 0.

It is therefore advantageous to take a > b because −c+ bζ − a 6 −c+ b− c 6 0 for
|ζ| < 1. Hence,

I(a, b, c) =
1

π

∫ 1

−1

dζ(1− ζ2)−1/2[(c− bζ)2 − a2]−1/2H(c− bζ − a).

There are three cases to consider: (i) c > a+b, (ii) a−b < c < a+b, and (iii) c < a−b.
In the case of c > a+ b, c− bζ − a > 0 for |ζ| < 1, therefore

I(a, b, c) =
1

π

∫ 1

−1

dζ(1− ζ2)−1/2[(c− bζ)2 − a2]−1/2 ≡ 1

πb

∫ 1

−1

dζG(ζ)−1/2.

It can be observed that G(ζ) = 0, when ζ = ((c+a)/b, (c−a)/b, 1, −1) in descending
order. Noting the integration limits are ζ = ±1, let

sin2 φ =
c+ a− b

2

ζ + 1

c+ a− bζ .

Then,

I(a, b, c) =
2

π
√
c2 − (a− b)2

K

(
4ab

c2 − (a− b)2

)
, (B 3)

where

K(k) =

∫ π/2

0

dν√
1− k sin2 ν

the complete elliptic integral of the first kind.
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In the case of a−b < c < a+b, c−bζ−a > 0 when ζ < (c− a)/b which is between
−1 and 1.

I(a, b, c) =
1

π

∫ (c−a)/b

−1

dζ(1− ζ2)−1/2[(c− bζ)2 − a2]−1/2 =
1

πb

∫ (c−a)/b

−1

dζG(ζ)−1/2

It can be observed that G(ζ) = 0, when ζ = ((c+ a)/b, 1, (c− a)/b, −1) in descending
order, hence, let

sin2 φ =
2a

c− a+ b

b(ζ + 1)

c+ a− bζ ,
then, the integral becomes

I(a, b, c) =
1

π
√
ab

K

(
c2 − (a− b)2

4ab

)
. (B 4)

For the last case, c < a− b, then c < a+ bζ for |ζ| 6 1. Therefore

I(a, b, c) = 0. (B 5)

In summary, for a, b and c all non-negative, (B 3)–(B 5) yield the explicit representation
of the integral (B1):∫ ∞

0

J0(at)J0(bt) sin ct dt

=



2

π
√
c2 − (a− b)2

K

(
4ab

c2 − (a− b)2

)
for c > a+ b

1

π
√
ab

K

(
c2 − (a− b)2

4ab

)
for |a− b| < c < a+ b

0 for c < |a− b|
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